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a b s t r a c t

A prediction-based power management strategy is proposed for fuel cell/battery plug-in hybrid vehicles
with the goal of improving overall system operating efficiency. The main feature of the proposed strategy
is that, if the total amount of energy required to complete a particular drive cycle can be reliably predicted,
then the energy stored in the onboard electrical storage system can be depleted in an optimal manner
that permits the fuel cell to operate in its most efficient regime. The strategy has been implemented
in a vehicle power-train simulator called LFM which was developed in MATLAB/SIMULINK software
and its effectiveness was evaluated by comparing it with a conventional control strategy. The proposed
strategy is shown to provide significant improvement in average fuel cell system efficiency while reducing
hydrogen consumption. It has been demonstrated with the LFM simulation that the prediction-based
rivetrain
imulation
rediction-based control

power management strategy can maintain a stable power request to the fuel cell thereby improving fuel
cell durability, and that the battery is depleted to the desired state-of-charge at the end of the drive cycle. A
sensitivity analysis has also been conducted to study the effects of inaccurate predictions of the remaining
portion of the drive cycle on hydrogen consumption and the final battery state-of-charge. Finally, the
advantages of the proposed control strategy over the conventional strategy have been validated through
implementation in the University of Delaware’s fuel cell hybrid bus with operational data acquired from
onboard sensors.
. Introduction

Fuel cells have emerged as one of the most promising candi-
ates for fuel-efficient and emission-free vehicle power generation.

n particular, proton exchange membrane fuel cells have received
uch attention for automotive applications due to their low oper-

ting temperature and high power density. Although the primary
arrier to the commercialization of fuel cells is their high cost, there
re other operational hurdles that need to be overcome. In order
o improve the transient performance of fuel cells, and to recover
nergy through regenerative braking, fuel cells are typically paired
ith reversible energy storage devices such as batteries or ultra-

apacitors to form hybrid power-trains. Such hybrid power-trains

re particularly well suited for transit applications where the aver-
ge power demand is low due to frequent starts and stops of the
ehicle.
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The high power density of reversible storage devices (batter-
ies, ultracapacitors) combined with their ability to supply transient
power demand has facilitated a downsizing of the fuel cell stack
such that it only needs to provide the average power requirement
over the drive cycle, thus reducing the cost. In addition, the ability
of the electrical storage system to absorb energy from regenera-
tive braking has made the concept of hybridization more attractive.
However, while the presence of multiple energy sources creates
opportunities to optimize efficiency, it requires intelligent strate-
gies to manage power flow.

Rodatz et al. [1] proposed a control strategy (equivalent
consumption minimization strategy) to determine the real-time
optimal power distribution. Kim and Peng [2] formulated a
combined power management/design optimization approach and
proposed a parameterizable and near-optimal controller for power
management optimization using a stochastic dynamic program-
ming algorithm. Paladini et al. [3] performed an optimization of
vehicle configuration and control strategy to minimize hydro-

gen consumption while sustaining battery state-of-charge. Paladini
et al. [4] have performed control strategy optimization for
charge-sustaining operation of batteries and have reported good
fuel economy and final battery state-of-charge (SOC) for a fuel
cell/battery hybrid system. These proposed control strategies are
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imed towards fuel savings for a charge-sustaining operation in
ybrid Electric Vehicles (HEVs).

This paper focuses on the energy management of a fuel
ell/battery hybrid vehicle for a charge depletion operation,
ccounting for the limitations of both the energy sources. In addi-
ion to efficiency, the transient nature of the power load influences
he fuel cell durability and its long-term performance. Kusoglu et al.
5] have shown that the proton exchange membrane can undergo
ompressive, plastic deformation due to hygrothermal loading,
esulting in residual tensile stresses after unloading. These residual
n-plane stresses in the membrane may explain the occurrence of
racks and pinholes in the membrane under cyclic loading. Pei et
l. [6] have studied the effects of four different kinds of operating
onditions on the fuel cell and have concluded that 56% of deteriora-
ion is due to load-change cycling and 33% due to start–stop cycling.
urthermore, frequent exposure of the cells to high voltages typi-
al of open circuit conditions can accelerate membrane and catalyst
egradation [7]. It is therefore desirable that the hybrid controller
ends a stable power request to the fuel cell stack and avoids fre-
uent load changes and multiple starts and stops of the stack.

The three main factors that affect the cycle life of a battery pack
re storage conditions, charge and discharge control, and depth-
f-discharge. Fast charge and discharge are inevitable when the
atteries operate within an automotive drivetrain. The permissible
epth-of-discharge and hence the available energy density is an

mportant factor that decides the suitability of batteries in HEVs and
lug-in Hybrid Electric Vehicles (PHEVs). Some batteries, such as
iMH, are suitable for powering HEVs in which the energy from the

uel is used to keep the batteries charged up. In such applications
he battery cycle life is conserved by cycling to shallow depths-of-
ischarge. This mode of operation is termed as charge sustaining.
or application in plug-in hybrid vehicles, batteries must be deep-
ischarge, long cycle-life batteries [8]. Recent advancements in
i-ion technology have led to the development of lithium–titanate
atteries which have higher energy density, more than 12,000
ycles (at 100% depth-of-discharge) and life expectancy of 20 cal-
ndar years [9] and thus are quite suitable for use in plug-in
ybrids. The nickel–cadmium (NiCad) battery, if cycled to a cer-
ain shallow depth-of-discharge for a large number of cycles may
ot yield a storage capacity as large as that corresponding to normal
ischarge–charge cycles [10,11]. A phenomenon known as “mem-
ry effect” occurs due to a sudden depression of voltage as a result
f highly repetitive patterns of use [11]. While the effect is com-
letely reversible, it requires a dedicated and lengthy maintenance
chedule [12]. It has therefore been found that it is best to discharge
he NiCads as deeply as possible at the end of the drive cycle, fol-
owed by slow recharge to 100% state-of-charge thus reducing the
eed for maintenance cycles. Therefore, despite a limited cycle life
1200 cycles) this renders the NiCads suitable for use in PHEVs.

This paper describes the analysis, implementation and vali-
ation of a prediction-based power management strategy that
educes fuel consumption while managing power flow in a manner
hat promotes fuel cell stack life and performance, while depleting
he battery to a desired state-of-charge at the end of the drive cycle.
he main feature of the proposed strategy is that, if the total amount
f energy required to complete a particular drive cycle can be reli-
bly predicted, then the energy stored in the battery pack can be
epleted in an optimal manner that permits the fuel cell to operate

n its most efficient regime.
. Vehicle configuration

The University of Delaware’s Fuel Cell Hybrid Bus Program com-
enced in 2005 with the goal to research, build and demonstrate
fleet of fuel cell transit buses and hydrogen refueling stations in
urces 195 (2010) 6699–6708

the state of Delaware. The first bus has been in daily service on the
University of Delaware campus since 2007, and details about the
analysis, operation and maintenance of this vehicle can be found
in Bubna et al. [13]. The vehicle configuration used for this paper is
described below. The bus was designed and constructed by Ebus,
Inc. located in Downey, CA. It is a fuel cell and battery powered 22-
ft bus that can hold 22 seated and 10 standing passengers. The bus
is driven by a single three-phase AC induction motor that is rated
for 130 kW peak and 100 kW continuous. The motor is coupled to
the rear drive wheels through a single-speed chain drive and a dif-
ferential. Two strings of nickel–cadmium batteries with a nominal
voltage of 300 V each are connected in parallel. Each string con-
sists of 50 monoblocks with each monoblock containing five cells.
The cells are rated for a nominal charge capacity of 100 A h and the
battery bank on the whole has a total energy capacity of 60 kW h.
The fuel cell system consists of dual Ballard Mark9 SSL stacks, each
with 110 cells rated at 19.4 kW. The hydrogen is stored in two com-
posite high-pressure tanks located on the top of the bus. The tanks
are rated for 350 bar and have a storage capacity of approximately
12.8 kg. The power-train schematic is shown in Fig. 1.

Although the fuel cell stack in the vehicle is adequately sized for
transit service on the University of Delaware (UD) campus, it is too
small to meet the average power requirement of certain standard
drive cycles such as SC03 (supplemental drive cycle number 3 for
federal test procedure) and UDDS (Urban Dynamometer Driving
Schedule), for example. Enhancing the stack size would permit the
simulation of these more demanding standard drive cycles. There-
fore, for the purpose of simulation studies (Section 5), a dual fuel
cell stack providing twice the power of the stack just described and
a proportionately larger balance-of-plant are employed. The rest of
the vehicle configuration is unchanged. It should be noted, how-
ever, that for demonstrating and validating the proposed power
management strategy in an actual vehicle, our first bus containing
the single stack was used.

The following sections describe the bus model and the LFM
simulation tool that was used to evaluate the performance of the
proposed power management strategy, the methodology and algo-
rithm of the proposed strategy, LFM simulation results including a
sensitivity analysis, and validation of the simulation results by an
actual implementation of the proposed strategy in our first fuel cell
bus.

3. Model description and simulation tool

A simulation tool called LFM (Light, Fast, and Modifiable) devel-
oped by Brown et al. [14] has been used in this study. A brief
description of the fuel cell and battery model is presented in the
following sections.

3.1. Fuel cell model

The current vs. voltage characteristic of the stack is obtained
from actual performance data (polarization curve) logged from the
fuel cell stack in the vehicle during operation. Hydrogen consump-
tion as a function of current is given by

ṁH2 = nfcMH2 Ist
2F

+ ṁpurge (1)

where nfc is the number of fuel cells, MH2 is the molar mass of
hydrogen, Ist is the stack current, F is the Faraday number and ṁpurge
is the rate of hydrogen purge.
Amongst the fuel cell balance-of-plant components the air com-
pressor consumes the major share of power. In the given model,
the power consumption of the balance-of-plant has been modeled
as the sum of a constant load and a variable compressor load, an
approach also followed by Paladini et al. [3]. The compressor power
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value (LHV) of the fuel, which is hydrogen in this case.

�fc,sys = Pfc,net
ṁH2LHVH2

(9)
Fig. 1. Simplified schem

onsumption, Pcp depends on the stack ambient pressure ratio and
he air flow rate, and is given by

cp = CpTamb
�m�cp

[(
psm
pamb

)(�−1)/�
− 1

]
ṁcp (2)

here psm is the pressure in supply manifold, pamb is the ambient
ressure, � is the ratio of specific heat capacity of air at constant
ressure, Cp, and the specific heat capacity of air at constant volume,
v, Tamb is the ambient temperature, �m (80%) and �cp (70%) are the
fficiencies of the compressor motor and compressor, respectively,
nd ṁcp is the mass flow rate of air through the compressor. To
redict compressor power consumption, Pcp as a function of stack
urrent, a knowledge of these quantities as a function of stack cur-
ent is needed. For a given stack current, Ist, the stoichiometric inlet
xygen mass flow rate to the cathode is given by

˙ O2,rct = nfcMO2 Ist
4F

(3)

here MO2 is the molar mass of oxygen. The mass flow rate of air
o the cathode is given by

˙ a,ca,in = �O2ṁO2,rct

yO2

= �O2nfcMO2 Ist
4yO2F

(4)

here �O2 is the oxygen excess ratio which is assumed to be main-
ained at a constant value of 1.6, and the molar fraction of oxygen
n air, yO2 , is 0.21. The total air flow rate through the compressor is
iven by

˙ cp = ṁa,cp + ṁv,cp = (1 + amb)ṁa,cp (5)

here � amb is the humidity ratio of the atmospheric air, and
ubscripts cp, a, and v denote compressor, air, and water vapor,
espectively. Also, the mass flow rate of dry air at the cathode inlet
nd compressor outlet can be assumed to be the same under steady
tate conditions. Therefore,

˙ cp =
(

1 + Mv�ambpsat,amb
Mapa,amb

)
ṁa,ca,in

=
(

1 + Mv�ambpsat,amb
Mapa,amb

)
�O2nfcMO2 Ist

4yO2F
(6)
here Ma and Mv are the dry air and water vapor molar masses,
espectively, ϕamb is the relative humidity of the ambient air
assumed to be 0.7), psat,amb is the vapor saturation pressure at
mbient temperature, and pa,amb is the pressure of the dry atmo-
pheric air. In the vehicle psm varies from 13.5 psig to 17 psig. Based
the hybrid power-train.

on the above analysis the gross stack power and net power can be
calculated in the following way:

Pfc,net = Pfc,gross − PBOP (7)

PBOP = Pconst + Pcp (8)

Pconst is set to 1 kW for the single stack in the vehicle and Pcp is
evaluated using Eq. (2). The plot in Fig. 2 demonstrates the gross
power, net power, and balance-of-plant load as a function of stack
current for the bus powered by a single stack. It should be noted that
in the current implementation, the LFM simulator calculates com-
pressor work assuming constant ambient conditions. Hence, it does
not account for variations in ambient conditions that a compressor
might experience during real-time operation.

The approach to reduce fuel consumption is to increase the oper-
ating efficiency of the fuel cell system which is defined as the ratio
of the net power deliverable by the fuel cell to the lower heating
Fig. 2. Variation of gross stack power, net power, compressor power and rest of
balance-of-plant load with stack current for the bus powered by a single stack.
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be depleted, and ˛ is a constant in the correction term which alters
ig. 3. Variation of fuel cell system efficiency with net fuel cell power simulated by
he LFM model and the corresponding vehicle data for the bus powered by a single
tack.

imilarly, the average fuel cell operating efficiency is given by

fc,avg = Efc,net
mH2LHVH2

(10)

here Efc,net is the net energy delivered by the fuel cell (i.e. gross fuel
ell energy minus the energy consumed by the balance-of-plant)
ver the duration of the drive cycle, and mH2 is the corresponding
otal fuel consumption. The fuel cell power request is set equal to
ross power. Hence it is of interest to know the variation of fuel cell
ystem efficiency with net power. The plot of system efficiency vs.
et power (Fig. 3) obtained from the above equations using param-
ters for the fuel cell stack in our bus reveals that the efficiency is
aximized at a net power of 9 kW. Good agreement between the

fficiency obtained from vehicle test data and the LFM model val-
dates the balance-of-plant modeling approach described above.
he same modeling approach is therefore extended to the dual-
tack employed in the simulation studies. For the dual-stack, Pconst

s proportionately increased to 2 kW. The compressor power Pcp is
alculated using Eq. (2). The only difference is that the dual-stack
ompressors are assumed to operate at lower pressures varying
rom 4 psig to 10 psig, assuming that an improved fuel cell stack
ill contain larger humidifiers. The efficiency for this system peaks

t 17 kW before decreasing again at higher net power. It should be
oted that the peak efficiency of the dual-stack is slightly higher
han the peak efficiency of the single stack because of the reduced
ompressor work due to lower operating pressures.

.2. Battery model

The NiCad battery in our buses is modeled as a voltage source
n series with a resistance, both of which vary with the state-of-
harge.

V = Voc − IRint,dis if I > 0

V = Voc − IRint,ch if I < 0
(12)

here Voc = f(SOC) is the open circuit voltage of the battery pack.

int,dis = f(SOC) and Rint,ch = f(SOC) are discharge and charge inter-
al resistances, respectively, for both the battery strings combined.
he internal resistances were obtained following Eq. (12) from OCV
s. SOC data, and voltage and current data acquired from onboard
Fig. 4. Battery SOC drop and fuel cell net power corresponding to the baseline and
the predictive control strategy for SC03 (∼2 h, 46 miles).

sensors during real-time transit operation of our fuel cell bus.

SOC(t) = SOC0 − �batt
∫ t

0
I dt

C
(13)

where C is the charge capacity (A h) of both the strings combined,
and

�batt = 1 if I > 0 (discharging)

�batt = 0.85 if I < 0 (charging)
(14)

The charging reaction in NiCd chemistry is accompanied by a side
reaction (electrolysis) due to which not all of the charging current
goes towards converting active material. The conversion factor�batt
is higher at low SOCs (less electrolysis) and lower at high SOCs
(more electrolysis). Based on data provided by the vehicle manu-
facturer, we have used an average conversion factor of 0.85 over
the entire SOC range during charging. No side reactions are present
during discharging and so the conversion factor is set to 1.0.

4. Power management strategy

Power flow from onboard energy sources has to be managed in
order to maintain the battery SOC at a desired level. It is assumed
that the battery is charged to a state of 0.75 at the start of a drive
cycle in our LFM simulations. It has been observed that at SOCs
higher than 0.75, the charging reaction in the NiCad battery is
accompanied by the initiation of a side reaction and a limited ability
to recover energy due to regenerative braking. The LFM simula-
tor does not model this phenomenon and hence, the initial SOC is
set to 0.75. Ordinarily, a charge depletion operating mode can be
achieved by driving all electric until the battery is depleted to the
desired SOC, followed by turning on the fuel cell system to sustain
the battery at the desired SOC. This power management strategy,
denoted as the baseline strategy, is depicted in Fig. 4. The following
relations hold for this mode:

Fuel cell turn-on condition : SOC(t) ≤ SOCd
Fuel cell power request : P(t) = Pavg + ˛(SOCd − SOC(t))

(15)

where Pavg is the power consumption of the traction motor and
accessory load combined, averaged over a moving time frame (1 h
in this case), SOCd is the SOC to which the battery is desired to
the power request based on the deviation of the real-time SOC from
the desired value. The value of ˛ used in the current simulations is
600,000 W. Hence, if the SOC differential is 1% for example, then
the fuel cell power request is incremented by 6 kW over Pavg. The
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verall performance of this strategy is relatively insensitive to the
alue of ˛. For instance, the only effect resulting from a smaller
would be somewhat larger fluctuations in the subsequent time

race of SOC because the fuel cell would take longer to restore the
OC to the desired value.

Such a power management strategy suffers from a lack of con-
rol over the operating point of the fuel cell stack. For example,
eferring to Fig. 4, it is possible that when the fuel cell needs to be
urned on, the fuel cell power request is higher than P�max , the value
t which the fuel cell efficiency is maximized. This is because the
ower request to the stack is essentially governed by the average
ower demand of the drive cycle and the deviation of the battery
OC from the desired level. Consequently, this baseline power man-
gement strategy does not yield the highest possible fuel efficiency
s the fuel cell will be operating at lower efficiency. We will use
his baseline strategy as a benchmark to compare the results from
he prediction-based strategy which can deliver higher efficiencies
s proposed below.

Transit buses have been the most widely chosen platforms for
uel cell technology demonstration for a number of reasons as
utlined in Ref. [13]. The proposed prediction-based power man-
gement strategy uses a priori knowledge of the driving route that
ould be typically available in transit applications and hence is
articularly well suited for transit buses. This information can be
xploited to manage power flow from onboard energy sources and
chieve the following objectives:

Operate the fuel cell stack in an efficient zone.
Reduce fuel consumption.
Send a smooth power request to the stacks and operate them
without multiple starts and stops or frequent load changes.
Discharge the battery to a desired state-of-charge at the end of
the drive cycle.

.1. Methodology and algorithm

The key to meeting the objectives stated above, is the knowl-
dge of the expected net energy, Efc,net, required from the fuel cell
tack, which will also be referred to as the predictive parameter in
his paper. This can be achieved either with the help of simulation
oftware [14] and a priori knowledge of the drive cycle or from data
cquired in real-time during an excursion of the drive cycle. Now,
he ideal way to meet this energy demand is to draw net power
rom the fuel cell system such that the stack functions at peak effi-
iency. This logic is implemented in the prediction-based strategy
y determining the stack turn-on time and net power request as
utlined in the following algorithm. It should be noted that battery
lso contributes to the energy requirement of the vehicle. However,
nly the fuel cell energy is considered in the equations because the
oal is to maximize operating efficiency of the fuel cell system.

The fuel cell stack is turned on and continues to operate the
oment the following condition is met:

≥ Tcycle −
(
Efc,net
P�max

+ ıcorr
)

(16)

he power request is given by

ower request = Efc,net
Tcycle − tturn on − ıcorr

(17)

f the battery SOC reaches SOCd at any point during the drive cycle,
he battery is operated in charge-sustaining mode for the rest of the

rive cycle as has been discussed while introducing the baseline
pproach. The net power request and implementation condition is
iven by

ower request = Pavg + ˛(SOCd − SOC(t)) if SOC(t) ≤ SOCd (18)
urces 195 (2010) 6699–6708 6703

where t is the current time, tturn on denotes the time when the stack
is turned on, P�max is the net fuel cell power corresponding to max-
imum system efficiency, Efc,net is the energy requirement from the
fuel cell for the duration of the drive cycle, ıcorr is a correction time
to start the stack earlier so as to account for the deficit in power
supply during ramp up and is equal to half of the ramp up time,
Tcycle is the total duration of the drive cycle.

The term ((Efc,net/P�max ) + ıcorr) denotes the time for which the
stack should be operated with a net power supply of P�max to meet
the energy requirement Efc,net. The conditions stated in Eqs. (16)
and (17) can be understood by considering three cases that arise.
They are

Case 1: Tcycle > ((Efc,net/P�max ) + ıcorr) implies that the duration for
which the stack needs to operate is less than the total duration
of the drive cycle. As the drive cycle progresses, time t increases
from 0 (at the start) until it reaches the value tturn on = Tcycle −
((Efc,net/P�max ) + ıcorr) which is when the stack turns on and con-
tinues to operate till the end of the drive cycle. Substituting for
tturn on in Eq. (17) we obtain Power request = P�max . This is exactly
the desired objective.
Case 2: Tcycle = ((Efc,net/P�max ) + ıcorr) implies that the duration for
which the stack needs to operate is equal to the duration of the
drive cycle. Therefore, tturn on = Tcycle − ((Efc,net/P�max ) + ıcorr) = 0
and Power request = P�max .
Case 3: Tcycle < ((Efc,net/P�max ) + ıcorr) implies that the duration for
which the stack needs to operate is greater than the duration of
the drive cycle. The earliest the stack can start is at the beginning
of the drive cycle, t = 0. This condition is enforced by the inequality
of Eq. (16). An obvious deduction is that the energy requirement
Efc,net is met by drawing net fuel cell power which is higher than
P�max and is given by Eq. (17) with tturn on = 0.

It should be noted that the implementation of charge-sustaining
operation (Eq. (18)) ensures that the stack is operating at required
power the moment the battery state-of-charge drops down to SOCd
thus safeguarding against the danger of draining the battery com-
pletely due to a delayed turn-on time, obtained from the condition
specified in Eq. (16). Such a miscalculation in stack turn-on time
can result from inaccurate prediction of Efc,net and will be discussed
in the following sections.

5. Simulation results

The proposed power management strategy has been imple-
mented in the LFM simulation software and compared with the
baseline approach for drive cycles of different lengths which have
been created by simply repeating the standard cycle multiple times
as shown in Fig. 5. Fig. 4 demonstrates the difference between the
predictive strategy and the baseline approach for the dual-stack
bus. Based on the prior information of net energy requirement from
the fuel cell, it can be seen that the fuel cell stack was turned on at
an earlier time within the drive cycle such that the power require-
ment corresponds to the maximum efficiency point of the fuel cell
system. The earlier start time of the stack results in a slower rate of
SOC drop from the moment the stack begins to operate.

Fuel consumption, average fuel cell operating efficiency, and
final battery state-of-charge are reported in Tables 1 and 2. A com-
parison of average fuel cell operating efficiency between the two
control strategies indicates that prediction-based power manage-

ment allows the stack to operate in a more efficient regime thereby
reducing fuel consumption. The final battery SOC is within 3% of
the desired value (0.3). The extent of fuel savings is evidently
dependent upon the average operating efficiency of the fuel cell
system with the baseline control strategy. For example, the aver-
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Table 1
Comparison of prediction-based and baseline strategy for SC03 as shown in Fig. 5.

Drive cycle length Output parameters Prediction-based strategy Baseline strategy Fuel savings (%)

∼2 h 46 miles Hydrogen consumption (kg) 1.5855 1.8362 13.65
Average FC system efficiency (%) 47.62 40.23
Final battery SOC 0.3003 0.2931

∼3 h 68 miles Hydrogen consumption (kg) 3.1866 3.6466 12.32
Average FC system efficiency (%) 47.71 41.29
Final battery SOC 0.298 0.2935

∼5 h 111 miles Hydrogen consumption (kg) 6.4971 7.2621 10.53
Average FC system efficiency (%) 47.03 41.85
Final battery SOC 0.295 0.294

∼7 h 154 miles Hydrogen consumption (kg) 9.9537 10.8776 8.49
Average FC system efficiency (%) 46.13 42.03
Final battery SOC 0.2938 0.2935

Table 2
Comparison of prediction-based and baseline strategy for UDDS as shown in Fig. 5.

Drive cycle length Output parameters Prediction-based strategy Baseline strategy Fuel savings (%)

∼2 h 45 miles Hydrogen consumption (kg) 1.3383 1.4309 6.47
Average FC system efficiency (%) 47.69 44.49
Final battery SOC 0.3033 0.3007

∼3 h 60 miles Hydrogen consumption (kg) 2.3946 2.5724 6.91
Average FC system efficiency (%) 47.8 44.48
Final battery SOC 0.3037 0.3009

∼5 h 104 miles Hydrogen consumption (kg) 5.5909 5.9937 6.72
Average FC system efficiency (%) 47.86 44.49
Final battery SOC 0.3099 0.3009

8.292
7.62
0.309

a
a
f
t

a
t
e
r
(
p

∼7 h 142 miles Hydrogen consumption (kg)
Average FC system efficiency (%) 4
Final battery SOC

ge efficiency corresponding to the SC03 driving schedule is 41.5%
s opposed to 44.5% for UDDS. This explains the relatively higher
uel savings when the new power management strategy is applied
o SC03.

It should be noted that the preceding results have been gener-
ted using the same drive cycle which was also used for obtaining

he parameter Efc,net. Therefore, the predicted value of net fuel cell
nergy is identical to the actual value. However, in reality two
ealizations of the same route could lead to different drive cycles
velocity vs. time profile) due to factors that cannot be completely
redicted such as instantaneous traffic conditions and ridership.

Fig. 5. Longer drive cycles formed by repeating standard cycles.
8.8448 6.25
44.49

7 0.3009

Consequently, the net energy delivered by the fuel cell stack during
one excursion on a chosen route may differ from the value obtained
during a different excursion on the same route. These variations can
lead to an inaccuracy in the predicted parameter and its effect has
been studied by means of a sensitivity analysis in the following
section.

5.1. Sensitivity analysis

The inconsistency in Efc,net can be modeled by varying the pre-
diction parameter corresponding to a given drive cycle and then
using the modified value in the predictive control strategy for the
same drive cycle. The effect of such an inaccuracy has been stud-
ied by varying the parameter by the following percentages (−15%,
−10%, −5%, 5%, 10%, 15%) to reflect different degrees of inaccuracy.
The modified value is then inserted into by the prediction-based
strategy in order to calculate fuel cell turn-on time and determine
the power request. Modifying Efc,net by −x% implies that we are
intentionally under predicting the parameter value such that it is
smaller than the correct value by x%.

Modifying Efc,net by −15% results in under prediction of fuel
cell net energy required to execute the chosen drive cycle. Con-
sequently, the fuel cell turns on later than it should and the battery
depletes to the desired SOC before reaching the destination as
shown in Figs. 6 and 7. On reaching the desired SOC the strategy
switches to charge-sustaining mode in accordance with the control
algorithm such that the net energy supplied by the fuel cell is still
equal to the original, unscaled, Efc,net value. However, the average

operating efficiency decreases because, late in the cycle, the fuel
cell is required to produce power at a higher rate at which its effi-
ciency is lower than the maximum possible efficiency. Similarly,
scaling Efc,net by 15% results in an over prediction of fuel cell net
energy. But, unlike under prediction, in case of an over prediction,
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ig. 6. Deviation in battery SOC drop and fuel cell net power corresponding to
naccuracy in prediction for the SC03 (∼2 h, 46 miles).

he net energy supplied by the stack is greater than required. Con-
equently the terminal battery SOC stays higher than the desired
OC and fuel savings decline (Figs. 6 and 7). In both cases of inaccu-
ate drive cycle predictions, it is of interest to analyze fuel savings
ith respect to the baseline control strategy which is shown in

igs. 8 and 9.
A decrease in the magnitude of fuel savings is observed for

ncreasing degree of under prediction. For a 74 km (46 miles) SC03
rive cycle, for example, the savings are reduced to 11.39% for an
nder prediction of −15% as opposed to 13.65% for accurate pre-
iction (Fig. 8). The reason, as has been stated earlier, is attributed
o a decrease in average operating efficiency of the fuel cell system.
similar trend is observed for drive cycles of increasing lengths.
owever, the key inference from this part of study is that, the

uel savings are still positive; i.e. there is still an overall reduc-
ion in hydrogen consumption as compared to the baseline strategy

ig. 8. Fuel savings and final battery SOC for varying degree of inaccurate predictions a
P—accurate prediction, OP—over prediction.
Fig. 7. Deviation in battery SOC drop and fuel cell net power corresponding to
inaccuracy in prediction for the UDDS (∼2 h, 45 miles).

while maintaining the battery SOC close to the desired level (within
3%). As expected, the magnitude of improvement diminishes with
increasing amounts of under prediction.

Increasing the degree of over prediction also results in a decline
in fuel savings. However, in this case, the decline occurs because the
fuel cell provides more energy than what is required with the result
that the battery is not discharged to the desired level. For a 74 km
(46 miles) drive cycle of SC03, the terminal battery SOC is 0.35 for
a 15% over prediction compared to an SOC of 0.3 for an accurate
prediction (Fig. 8). For drive cycles of greater lengths the terminal
battery SOC increases. This not only leads to a decrease in fuel sav-
ings, but may also result in higher fuel consumption compared to

the baseline approach. Hydrogen consumption can be expected to
be higher in comparison to the baseline strategy in the case of over
prediction and the probability increases with the degree of over
prediction and the drive cycle length.

nd for variable drive lengths for the SC03 driving schedule. UP—under prediction,
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test run the vehicle made six trips on the route and drove a total
of 38.6 km (24 miles) for 100 min. The route includes two bus
stops and the duration of each round trip is matched to a typical
time-bound transit operation. The drive cycle (Fig. 12) includes
ig. 9. Fuel savings and final battery SOC for varying degree of inaccurate predicti
P—accurate prediction, OP—over prediction.

It should be noted that for each drive cycle considered in the
resent work, the average power required to sustain battery SOC,
avg is greater than P�max (Fig. 3). This is expected for cost-effective
ower source configurations where the fuel cell is down-sized com-
ared to the battery pack and is just enough to meet the average
ower requirement of urban transit drive cycles [13]. If, however,
avg is less than P�max , the situation always degenerates to the base-
ine control strategy as depicted in Fig. 10. Trajectory ADC shows
he variation of SOC with time for Pavg < P�max if a prediction-based
trategy is followed without enforcing the charge-sustaining mode
t SOCd. Evidently, the SOC reaches the desired level at B before the
urn-on time at D as calculated by Eq. (16). Since it is not desirable
o let the SOC fall below SOCd, the charge-sustaining mode comes
nto effect at B which implies no fuel savings as the fuel cell power
s below the level at which efficiency is maximized. An alterna-
ive approach, depicted by trajectory ABEC is to turn on the stack

hen the desired SOC is reached (at B) and draw Efc,net amount of

nergy at P�max before shutting it down (at E). In this manner, the
tack can be operated at peak efficiency with additional savings in
uel.

Fig. 10. Possible SOC profiles corresponding to the condition Pavg < P�max .
d for variable drive lengths for the UDDS driving schedule. UP—under prediction,

6. Validation

Both the prediction-based and the baseline power management
strategies were evaluated by implementing them on the University
of Delaware’s fuel cell/battery hybrid bus. The vehicle selected
for this test was UD’s first fuel cell bus; as described earlier it is
equipped with a single stack rated at 19.4 kW and 60 kW h of NiCad
batteries. The test was conducted by driving the bus on a defined
route (Fig. 11) on two separate days, first with the baseline control
strategy and next with the prediction-based strategy. During each
Fig. 11. Aerial view of the route followed during the test drive cycle.
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Fig. 12. Profile of the test drive cycle.

igh and low speed segments with an average of 23.3 km h−1

14.5 mph).
The initial and desired SOC were chosen to be 0.6 and 0.4, respec-

ively, which allowed the control strategies to be tested on a drive
ycle of smaller distance and duration. While operating with the
aseline control strategy, the fuel cell was turned on when the
OC reached 0.41 (Fig. 13). This allowed for some warm up time
o that the stack could ramp up and provide 13.5 kW of net power
n order to sustain the battery at 0.4 SOC. In Fig. 12 the periodic

harp declines in SOC correspond to high power demands when
he vehicle executes the high speed segment of the drive cycle.
n the other hand, frequent occurrences of SOC rise are attributed

o cell charging while the vehicle is idling at a bus stop or a traf-
c intersection. The optimal net fuel cell power of the test vehicle

Fig. 14. Comparison of simulation output and vehicle
Fig. 13. Battery SOC drop and fuel cell net power corresponding to the baseline and
predictive control strategies for the test drive cycle.

was obtained experimentally as 9 kW with a corresponding fuel cell
system efficiency of 45.9% (Fig. 3).

The optimal power along with the net energy spent by the fuel
cell during the first run (baseline strategy) was used as an input to
determine the stack turn-on time for the second run that employed
the prediction-based strategy. Fig. 13 shows that for the prediction-
based strategy the stack turned on earlier and operated at stable
optimal power for the rest of the drive cycle. A quantitative compar-
ison of the key output parameters confirms the benefits of using the

proposed power management (Table 3). Through intelligent man-
agement of energy flow and with no additional costs, the stack was
operated at higher efficiency resulting in 11.7% savings in fuel con-
sumption. Moreover, the stable operation of the fuel cell system
also extends the life of the stack. The battery SOC at the end of the

data for the prediction-based test drive cycle.
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Table 3
Comparison of prediction-based and baseline strategies for the test drive cycle.

Output parameters Prediction-based
strategy

Baseline
strategy

Fuel
savings (%)

Hydrogen
consumption
(kg)

0.9063 1.0124 11.7

Average FC system
efficiency (%)

44.7 39.5

Final battery SOC 0.4115 0.402

Table 4
Comparison of simulation output and vehicle data for the prediction-based test drive
cycle.

Output parameters Vehicle data Simulation
output

Error (%)

Hydrogen consumption (kg) 0.906 0.934 3.1
SOC change 0.189 0.2 5.8
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Battery energy (W h) 9493 10116.6 6.6
Fuel cell net energy (W h) 13503 13584 0.6
Fuel gross energy (W h) 17186 16952 1.4
Average FC system efficiency (%) 44.7 43.6 2.5

rive cycle was close to the desired lower limit, which is one of the
onsiderations for plug-in hybrid operation.

The prediction-based power management strategy was also
mplemented in the LFM simulator which was customized to simu-
ate the power-train of the test vehicle. The simulation results were
ound to be in good agreement with the vehicle data (Fig. 14). The
uel consumption and SOC drop given by the simulator over the
ntire drive cycle match very well with the actual values that were
btained from the onboard sensors in the vehicle. Table 4 quan-
ifies the errors between the simulation output and vehicle data
ith respect to key parameters. The agreement between simula-

ion output and data acquired in real-time establishes the validity
f the LFM simulator used in the present study. Also, the results
rom the two test drives confirm the conclusions obtained from
he simulations about the benefits of the prediction-based power

anagement strategy.

. Summary and conclusions
A new prediction-based power management strategy for fuel
ell/battery plug-in hybrids has been proposed and implemented in
he LFM simulation software. Simulation results for the prediction-
ased strategy showed significant improvements in fuel cell system

[
[
[

[

urces 195 (2010) 6699–6708

efficiency and reduction in hydrogen consumption compared to a
conventional, baseline strategy of charge sustenance. The impor-
tance of a stable power request to the fuel cell has been stated
and realized. A sensitivity analysis was conducted to study the
effects of inaccurate predictions. Results indicate that under predic-
tion reduces the magnitude of fuel savings, and in the borderline
case, may show results identical to the baseline strategy. A large
degree of over prediction, on the other hand, may even lead to
higher fuel consumption than the baseline strategy while result-
ing in a higher terminal battery SOC than desired. A conservative
approach may therefore be adopted using a downscaled predicted
parameter value, which results in fuel savings that may be less than
the maximum possible but will safeguard against entering into the
over predicted zone and the associated risk of increased fuel con-
sumption. The implementation of the proposed strategy and its
comparison with the baseline control strategy in a fuel cell and
battery powered hybrid bus has confirmed the benefits predicted
from simulation studies. Finally, good agreement between the sim-
ulator outputs and data acquired in real-time confirms the validity
of the power-train simulator.
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